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I. Introduction 

An interesting, though relatively little-studied, class of 
molecules is the C„H„ hydrocarbons whose carbon skele­
tons form convex polyhedra. A subset of these, the regular 
polyhedral hydrocarbons based upon the perfect solids of 
antiquity, is composed of three potential members: tetrahe­
drane (n = 4), cubane (n = 8), and dodecahedrane (« = 
20)2 (Figure 1). As yet, only cubane has been synthesized3 

and geometrically characterized.4 Tetrahedrane has been 
the subject of a recent theoretical study5 which predicted 
that it would be a bound molecule, detectable and perhaps 
amenable to isolation at low temperatures. The present 
paper gives the results of a theoretical study of dodecahe­
drane.6 '7 

Dodecahedrane is of interest because of its high symme­
try, its topology, and, of course, its aesthetic allure.8 It 
might well serve as a model system for many physical-or­
ganic studies, because of its rigid, though relatively strain-
free structure, its limited facility for solvation, and its sur­
face as a potential template for studying various hydrocar­
bon reactions. In sections II and III respectively we consider 
various aspects of dodecahedrane's symmetry and topology. 
Section IV contains the results and interpretation of a mo­
lecular orbital calculation, including a plot of the valence-
electron charge density. 

II. Considerations of Symmetry 

One of the most striking of the symmetry properties of 
dodecahedrane is its sphericality (Figure 1). With CC bond 
lengths of 1.54 A (the diamond distance), 20 carbons lie on 
a sphere of diameter 4.32 A; the hydrogens at a bond length 
of 1.09 A (the ethane value) lie on an outer sphere of 6.50 
A. In fact, dodecahedrane would be the molecule of highest 
known point group symmetry, Ih,9 with 120 point group op­
erations leaving the molecule invariant. The dodecahedrane 
charge density has as its first nonvanishing multipole mo­
ment the 26-pole moment10 

_fuV*T
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where \p is the ground state vibronic wave function and the 
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multipole operator y6 is the sum over electrons and nuclei1' 

7 6 = E ^ ' 6 [ £ ill T I™! i S " ( c o s e , - V ^ l (2) 
i Lm=-6 (6 + | m | ) ! J 

where q, is the charge of particle i and (/•„ 9,, 0,) are its 
polar coordinates referred to some suitably-chosen coordi­
nate system with origin at any point in space; in I/, symme­
try only one of the 13 nonvanishing components of the 26-
pole tensor is unique. By contrast, the two preceding regular 
polyhedral hydrocarbons tetrahedrane (Tj) and cubane 
[Oh) have 23-pole (octopole) and 24-pole (hexadecapole) 
moments, respectively. 

The lack of any low multipole moments in dodecahe­
drane implies the almost-complete absence of contributions 
of all but dispersion forces to the long-range interactions, 
e.g., to the second virial coefficient,12 suggesting that dode­
cahedrane in the vapor phase will resemble a large rare gas 
molecule in its physical properties. For the same reason, do­
decahedrane may also be anticipated to sublime more readi­
ly than would be expected for a molecule of its molecular 
weight. An analogous case is cubane which has a heat of 
sublimation of 19.2 kcal/mol at 298°K, one-fourth the 
value of its lower-symmetry isomer cyclooctatetraene, 71.1 
kcal/mol.13 

The high symmetry of dodecahedrane serves to simplify 
the description of its molecular force field. The number of 
independent harmonic force constants is 74, almost 100-
fold fewer than the 6555 which would be necessary to char­
acterize a completely asymmetric 40-atom molecule. This 
drastic reduction in independent parameters arises from the 
high degeneracies of the vibrational modes. The 114 normal 
modes belong to symmetry species: 2Ag, T l g , 2T2g, 4Gg, 
6Hg , 3T,U, 4T2u, 4GU and 4HU, where the T, G, and H 
modes are three-, four-, and fivefold degenerate, respective­
ly (there is no twofold degeneracy in h symmetry). There 
are only three infrared active modes (T iu) and eight Raman 
active modes (2Ag and 6Hg) and, of course, only single pro­
ton and 13C NMR resonances. 

It is interesting to note that dodecahedrane is a molecule 
almost devoid of angle strain. The CC bonds, being edges of 
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Figure 1, Three views of dodecahedrane. The bottom two are a stereosco 

regular pentagons, meet at angles of 108°; the HCC angles 
are calculated to be 110°54'.14 The proximity of these an­
gles to the idealized tetrahedral value, 109°28', is truly re­
markable, and it is anticipated that the 50 dodecahedrane 
bonds will very nearly coincide with their interatomic vec­
tors and be nominally sp3. On the other hand, there do exist 
numerous nonbonded interactions, for example, 30 pairs of 
eclipsing CH interactions, and these have been shown by 
empirical force-field calculations to be the dominant contri­
butions to the steric strain in dodecahedrane.15 Still in all, 
the total strain energy has been estimated to be between 43 
and 88 kcal/mol at 25°,15 implying a miniscule 2-4 kcal/ 
mol per CH group or 1.3-3 kcal/mol per CC framework 
bond. Cubane and tetrahedrane have calculated strain ener­
gies of 14 and 22-24 kcal/mol, respectively, per CC 
bond.5'15 

III. Considerations of Topology 

The labeled graphs of the carbon skeletons of tetrahe­
drane, cubane, and dodecahedrane are shown below. Each 
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pair. 

is a planar graph, i.e., may be imbedded on the surface of a 
sphere,16 and each region (including the exterior) arises 
from a polyhedron face, each vertex or node from a triva-
lent carbon, and each edge from a CC bond. The Euler 
polyhedron formula17 (the "phase rule of topology") v + f 
— e = 2 applies to all convex polyhedra and thus serves to 
relate the numbers of regions, vertices, and edges of their 
graphs, specifically here, the graphs I—III. For dodecahe­
dron we have v = 20 , /= 12, and e = 30. 

The graphs I—III are cubic, meaning that there are three 
edges incident on each vertex, and each is also hamiltonian 
which, by definition, requires the existence of a spanning 
cycle18 (a closed, alternating sequence of vertices and edges 
beginning and ending with a vertex, in which each edge is 
incident with the vertices preceding and following it, each 
vertex and edge being distinct and each vertex being includ­
ed in the sequence). By following the numbering in labeled 
graph III a spanning cycle is traversed. It may be seen that 
whereas all the vertices are contained in the spanning cycle, 
v/2 edges are not; moreover, these missing edges cannot be 
incident on the same vertex. The ten excluded edges are 
"zero bridges", as, for example, in the IUPAC name for do­
decahedrane: undecacyclo[9.9.0.02'9.0.3'7.04-20,05'18.06'16.-
08,i5.rjio.i4.o12'19.013'17]eicosane,19 where the numbering is 
that of III and Figure 2. 

An important application of graph theory to dodecahe­
drane is the enumeration of its substitutional isomers. The 
necessary graph counting methodology has been developed 
by Redfield20a and P61ya20b and applied to inorganic sys­
tems by Kennedy et al.21 The basic argument utilizes the 
cycle index, Z, for the icosahedral group in a basis of the 20 
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carbon vertices which are permuted under the pure rota­
tions of that group. 

Z(I,C20H20) - ^ [/", * + 24/54 + 20/3
6 / i2 + W2'0) O) 

Here, 60 is the order of the group and the meaning of the 
variables/) raised to the /th power (i.e.//') is made clear by 
considering the term 20fs6f\2 where 20 is the number of op­
erations in the class C3. The operations of this class leave 
two points invariant (hence/i l-f\l = f\2) while permuting 
six sets of three points among themselves ( / 3 1 ^ 1 . . . = 
fi6). With the cycle index obtained it is straightforward to 
determine the number of stereoisomers for any substitution 
pattern on the dodecahedron. Consider tik substituents of 
type k and m types where Y.km »k = 20. Then, replace each 
//' with (xi-< + X2I + • . . xJ)' in Z(I, C20H20) and collect 
terms to obtain the coefficient of Xi^1X2"

2 . . . xm"m, which 
is the desired number of isomers. Thus, the number of 
monochloromonomethyldodecahedranes is determined by 
the substitution (xi3 + X2

3 + X33)6 (xi + x2 + x3)2 for 
hbf\2, for example, and the coefficient of x\ 18X2X3 is found 
to be 7. This may be verified by noting that there are one 
one-bond, two two-bond, two three-bond, one four-bond and 
one five-bond substitution isomers. The two two-bond deriv­
atives are an enantiomeric pair, e.g., the l-methyl-3-chloro 
isomer is enantiomeric with the l-chloro-3-methyl isomer 
(but rotationally equivalent to the l-chloro-4-methyl deriv­
ative, the latter being considered a two-bond rather than a 
three-bond isomer). Similarly, the two three-bond deriva­
tives are an enantiomeric pair, e.g., l-methyl-5-chlorodode-
cahedrane and l-chloro-5-methyldodecahedrane. 

The existence of enantiomers among the stereoisomers 
may be demonstrated by considering the cycle index of the 
point group h which includes all the group operations 
above and beyond the pure rotations, i.e., inversion, reflec­
tions, and improper rotations. Counting the isomers with 
this cycle index will not distinguish between enantiomers, 
which are stereoisomers nonsuperimposable by rotation just 
because of the fact that these Sn operations do not apply. 
Thus, with 

Z(/„,C20H20) = J ^ [/,20 + 24/5* + 20/3
6 / i2 + 

16/2
10 + 24/,o2 + 20/V/63 + 15/, Y2

8] (4) 

the coefficient of x\ 18X2X3 is found to be 5, indicating that 
there are 7 - 5 = 2 pairs of enantiomers. It is obvious that 
the benefits of this isomer counting technique accrue rapid­
ly with increasing complexity of the substitution pattern. 

Two other substitutional isomers merit particular men­
tion. If eight of the hydrogens are replaced by eight identi­
cal ligands, e.g., chlorines, at positions (1,7, 14, 18) and (4, 
9, 12, 16), there results an example of a rigid molecule of 
Th symmetry which is an exceedingly rare event. (Again, 
this group might preferably be named T, as it is the direct 
product of the group T with the inversion operator and fur­
thermore does not contain a reflection plane perpendicular 
to a threefold axis.) It might be noted that these ligands oc­
cupy the corners of a hypothetical cube inscribed within the 
dodecahedron. If instead of replacing eight hydrogens, only 
four identical ligand substitutions are made, using the sites 
in either the first or second parentheses, two enantiomeric 
molecules of the optically active point group T (i.e., a group 
with no improper rotations) are obtained. Again, rigid mol­
ecules of this symmetry are very rare. 

IV. Molecular Orbital Theory 

In this section we consider the molecular orbital descrip­
tion of dodecahedrane. Although the 100 valence electrons 
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Figure 2. Depiction of the dodecahedrane molecule. The numbering of 
the carbon skeleton is such as to indicate a spanning cycle and corre­
sponds to the labeled graph III. 

Table I. Orbital Energies of Dodecahedrane (au)" 

Orbital 

lag 

I t 1 U 

Ih8 

2ag 

2t,u 

lgu 

I t 2 U 
1Sg 
2hg 

Energy 

-2.37 
-1.94 
-1.54 
-1.24 
-1.18 
-1 .14 
-1.02 
-0.87 
-0.82 

Orbital 

2t2U 
3hg 

Ih11 

2gu 

2gg 
3ag* 
3t2U 

3t i u 

3gg 
4hg 

Energy 

-0 .59 
-0 .56 
-0 .52 
-0 .50 
-0.45 
+0.24 
+0.25 
+0.25 
+0.27 
+0.30 

a INDO values for CC and CH bond lengths of 1.54 and 1.09 A, 
respectively. t> Lowest unoccupied molecular orbital. 

and 40 atoms precluded an ab initio treatment, a semiem-
pirical INDO calculation was practicable, and the results 
are given here. 

A determination of which molecular orbitals are occu­
pied in dodecahedrane can be made without resort to calcu­
lation, which is required only for the relative ordering. The 
30 CC bonds may be considered to arise from localized mo­
lecular orbitals (LMO's) which form a basis for ag(R), gg, 
hg(2), tiu, t2u, gu, and hu(N) canonical molecular orbitals. 
The designations R and N indicate species in which rigor­
ous specification of the MO as being constructed exclusive­
ly from radial atomic orbitals or hybrids (H Is, C 2s, C 2p) 
or nonradial (i.e., tangential) hybrids (C 2p) is possible. 
This classification applies also to the highest occupied MO 
of tetrahedrane (Ie, N) and three occupied orbitals of cu-
bane (leg, N; la2u, R; lt2u, N) and it is, of course, a useful 
device for constructing symmetry-adapted basis functions in 
planar, cyclic systems. The 20 CH bonds or LMO's of do­
decahedrane form a basis for ag(R), gg, hg, tiu, t2u, and gu 
MO's. Thus, the totality of occupied molecular orbitals 
should be ag(2), t iu(2), t2u(2), gg(2), gu(2), hg(3), and 

hu(l).22 

The intuited ground state configuration was confirmed 
by the occupied orbitals obtained in the INDO calculation 
and are given in Table I. Included in the list are the lowest 
few unoccupied MO's. In accounting for the relative or­
dering of the levels we might first note that the diagonal 
INDO Fock matrix elements over CC and CH LMO's are 
of a similar order of magnitude, as are the off-diagonal ele­
ments between pairs of CC and CC and CH LMO's inci­
dent on the same carbon. Thus, there is anticipated an in-
terspersal of framework and CH orbital energies and, to 
some extent, loss of the distinctions of pure framework and 
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Figure 3. A charge density contour plot of dodecahedrane in a plane 
containing carbons C3, C4, C13, C H , the attached hydrogens, the mid­
points of bonds C8C9 and C18C19 (M and M'), and the molecular mid­
point. The charge density was constructed from the INDO density ma­
trix and Slater orbitals according to eq 5. The same contour is obtained 
in the plane y = O. 

CH character7 (except for the hu orbitals, which are purely 
framework). The equivalent importance of CC and CH 
mixing also implies that no simple perturbative argument 
based on zeroth-order framework orbitals, with CH bond­
ing treated as a perturbation, will suffice. 

A helpful device for rationalizing the orbital ordering is 
the so-called crystal-field argument employed previously by 
Hoffmann and Gouterman23 for some smaller polyhedra of 
boron and carbon atoms. The effective potential experi­
enced by electron /' in the orbital in question, arising from 
the 40 nuclei and remaining electrons, is assumed to be ex­
pandable in a Legendre series about the molecular center as 
origin. The spherically symmetric part of this effective po­
tential furnishes a one-electron hamiltonian ho(i) = — V,2/2 
— ZtKJri) where Zeff is an effective nuclear charge and r,-> 
is equal to Rc, the radius of the carbon sphere (i.e., the po­
tential is constant) for r, < Rc, and r,-> = /7 for r, > Rc-
The orbital energies in this potential are known, from the 
work of Wannier24 and Chen,25 to be ordered in increasing 
energy: Is < 2p < 2s = 3d < 3p = 4f < 3s = 4d = 5g < 4p 
= 5f = 6h < 5d = 6g = 7i. These orbitals transform in the 
group h according to s —• ag; p -*• t\u; d -* hg; f -* t2U, gu; 
g -+ gg, hg; h ->- tiu, t2u, hu; i -»- ag, t!g, gg, hg. The ground 
state configuration has been intuited and confirmed by the 
molecular orbital calculation; thus, making the identifica­
tions that lag arises from the Is eigenfunction of ho, 2ag 
from the 2s, ltiu from 2p, etc., and assuming that the zer­
oth-order separations are larger than the first-order split­
tings due to the remaining part of the r,(, /•,•> expansion, the 
anticipated ordering of molecular orbitals is: lag < ltiu < 
2ag « Ih8 < 2tiu « lt2u « lgu < 2hg « lgg « 3hg < 2t2u * 
2gu » lhu < 2gg. This is essentially the sequence obtained 
by the INDO calculation. 

Of course, this argument is a bit deceptive in that only 
those eigenfunctions of ho are chosen which are related to 

those in the actual molecular orbital configuration. The 
spherically symmetric potential is not picking the configu­
ration, a priori, and its ordering, but only the latter. It 
might also be noted that an INDO calculation on a dodeca­
hedrane of nitrogens (the hypothetical N2o) furnishes a 
closed shell configuration identical with that of dodecahe­
drane, but with a rather different ordering of the orbital 
energies,26 probably due to the different extent of mixing 
between NN framework bonds and N lone pairs. This result 
suggests that the success of the crystal field argument may 
be to some extent fortuitous. 

Figure 3 is a contour plot of the dodecahedrane INDO 
charge density, in a plane containing carbons C3, C4, Cn, 
C14, and their attached hydrogens, and passing through the 
midpoint of the molecule and the midpoints of carbon-car­
bon bonds CgCg(M) and CIgC]9(M')- The charge density, 
p(r), was constructed from 

P « = E P1JXi(T)Xj(T) (5) 
•i 

where P/j is the INDO density matrix and the x/ are carbon 
2s and 2p Slater orbitals of exponent 1.625 and hydrogen Is 
orbitals of exponent 1.2. This procedure is somewhat ad hoc 
and not entirely consistent with the zero differential overlap 
approximation which would exclude from eq 5 products of 
atomic orbitals on different atoms. However, a more consis­
tent calculation employing the symmetrically-orthogonal-
ized density matrix F = S~ '/2 PS~ 1Z2 in place of P21 in eq 
5 gave the same qualitative results, mainly reducing the 
contour levels by ca. 25%. 

The most interesting feature of the contour plot is the 
charge density at the center of the molecule, smaller by a 
factor of 60 than at the CC bond midpoints, M and M'. The 
reason for this is the small factor e-3-25/?c/oo m the contri­
bution to p(0). 

V. The Static Jahn-Teller Effect in the Ions of 
Dodecahedrane 

Having considered dodecahedrane from several view­
points we now examine the ions which would result from its 
oxidation to C2oH2o

+ and reduction to C2OH2O
-- While 

these species will probably maintain the same connectivity 
as dodecahedrane itself, it is of interest to investigate the 
highest possible symmetries resulting from solution of the 
static first-order Jahn-Teller problem in the limit of weak 
spin-orbit coupling. 

Consider, for example, the 2Gg state obtained by ionizing 
from the highest-occupied, fourfold degenerate 2gg level. 
The possible subgroups attained by symmetry distortion 
along the active Gg vibrational modes are Th, D^, C2/,, Sf1, 
and lower groups yet. Distortions involving the Hg modes 
lead to symmetries D$d, D^d, Dih, Se, Cih, and lower 
groups, again. Only Gg and Hg modes have first-order 
Jahn-Teller matrix elements in a G or H electronic mani­
fold. Now, examining the fate of the electronic levels in 
these lower symmetries we find that in Th symmetry the gg 
level splits into ag + tg and in D-$d symmetry gg splits into 
aig + a2g + eg. Thus, both Th and D^d are possible candi­
dates for the highest point group of the distorted C2oH2o

+. 
On the other hand, in Dsd symmetry gg splits only into the 
degenerate levels eig + e2g, and this degeneracy is not lifted 
until the fivefold axis is lost (ultimately, C^h)• Therefore 
the 2Gg ion cannot be of Dsd symmetry. 

The analysis of the 2G11 molecule arising from ionization 
out of the penultimate, fourfold degenerate gu level leads to 
the same result as the above case, namely, Th and D^d as 
possible candidates. Finally, it is found that the 2H11,

 2Ti11, 
and 2T2u ions (cations or anions possible in the latter two 
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cases, from Table I) are candidates for Dsd or D^ symme­
try, but not Th. 
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Abstract: Kinetic studies were made on clustering reactions involving NH4
+, CH3NH3

+, and (CH3J2NH2
+ between 250 and 

4000K. The association reactions BH+ + B + M — B2H+ + M (B = CH3NH2, (CH3)2NH) exhibit transitions between 
second- and third-order kinetics in the pressure range 0.5-2.0 Torr and the temperature range 250-4000K. The dependence 
of the overall forward rate constants on third-body pressure confirms the energy transfer mechanism BH+ + B — B2H+ * 
followed by B2H+ * + M - • B2H+ + M. The dissociation rate constants, kb, of the excited complexes and their temperature 
dependences are [given respectively as excited complex, k\,35° (107 sec-1). T dependence of kb]: (NH4

+-NH3)*, 220, T3 2; 
(CH3NH3

+-CH3NH2)*, 12, T36; ((CH3)2NH2
+-(CH3)2NH)*, 6.0, T1-2. The decrease of the rate constants with increasing 

molecular complexity and the increase with increasing temperature are quantitatively accounted for by calculations based on 
an RRKM coupled quantum oscillator model. 

The kinetics of the decomposition processes of excited 
reaction intermediates is a problem of central significance 
in determining the rates and results of chemical reactions. 
The study of reactions with well-established mechanisms 
can provide relatively straightforward information on de­
composition rates and lifetimes of excited reaction com­
plexes and the effects of the structure, complexity, and en­

ergy content on the decomposition rates of such species. 
The present paper reports the results of studies on the 
mechanism of clustering reactions of the ions NH4+ , 
C H 3 N H 3

+ , and (CH 3 ) 2 NH 2
+ and the effects of tempera­

ture and molecular complexity on the decomposition rates 
of the excited ion-molecule association complexes (NH 4

+ -
NH 3 )* , (CH 3 NH 3

+ -CH 3 NH 2 )* , and ((CHj) 2NH 2
+ -
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